Encodable activators of SRC family kinases.

نویسندگان

  • Crystal D Zellefrow
  • Jennifer S Griffiths
  • Sarmistha Saha
  • Abby M Hodges
  • Jessica L Goodman
  • Joshiawa Paulk
  • Joshua A Kritzer
  • Alanna Schepartz
چکیده

There is considerable current interest in the design of encodable molecules that regulate intracellular protein circuitry and/or activity, ideally with a high level of specificity. Src homology 3 (SH3) domains are ubiquitous components of multidomain signaling proteins, including many kinases, and are attractive drug targets because of the important role their interactions play in diseases as diverse as cancer, osteoporosis, and inflammation. Here we describe a set of miniature proteins that recognize distinct SH3 domains from Src family kinases with high affinity. Three of these molecules discriminate effectively between the SH3 domains of Src and Fyn, which are expressed ubiquitously, and two of these three activate Hck kinase with potencies that rival HIV Nef, one of the most potent kinase activators known. These results suggest that miniature proteins represent a viable, encodable strategy for selective activation of Src family kinases in a variety of cell types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication

SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...

متن کامل

Cellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication

SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...

متن کامل

Regulation of Src Family Kinases in Human Cancers

The nonreceptor protein tyrosine kinase Src plays a crucial role in the signal transduction pathways involved in cell division, motility, adhesion, and survival in both normal and cancer cells. Although the Src family kinases (SFKs) are activated in various types of cancers, the exact mechanisms through which they contribute to the progression of individual tumors remain to be defined. The acti...

متن کامل

The role of Src in solid tumors.

The proto-oncogene c-Src (Src) encodes a nonreceptor tyrosine kinase whose expression and activity are correlated with advanced malignancy and poor prognosis in a variety of human cancers. Nine additional enzymes with homology to Src have been identified and collectively are referred to as Src family kinases (SFKs). Together, SFKs represent the largest family of nonreceptor tyrosine kinases and...

متن کامل

Protein-tyrosine kinase and GTPase signals cooperate to phosphorylate and activate Wiskott-Aldrich syndrome protein (WASP)/neuronal WASP.

Protein-tyrosine kinases and Rho GTPases regulate many cellular processes, including the reorganization and dynamics of the actin cytoskeleton. The Wiskott-Aldrich syndrome protein (WASP) and its homolog neuronal WASP (N-WASP) are effectors of the Rho GTPase Cdc42 and provide a direct link between activated membrane receptors and the actin cytoskeleton. WASP and N-WASP are also regulated by a l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 51  شماره 

صفحات  -

تاریخ انتشار 2006